% scribe: Hua Chen % lastupdate: Oct. 5, 2005 % lecture: 8 % title: Almost sure limits for sum of independent random variables % references: Durrett, section 1.7 % keywords: almost sure convergence, SLLN, strong law of large numbers, Kolmogorov's maximal inequality, Kolmogorov's inequality % end \documentclass[12pt,letterpaper]{article} \include{macros} \begin{document} \lecture{8}{Almost sure limits for sums of independent random variables}{Hua Chen}{hchen@berkeley.edu} This set of notes is a revision of the work of Animesh Kumar, 2002. \section{Showing almost sure convergence via subsequences} % keywords: almost sure convergence, SLLN, strong law of large numbers % end General settings/notation: let $S_n=X_1+...+X_n$. The $X_i$'s are assumed independent, all defined on some probability space, $(\Omega,\mathcal{F},\P)$. Sometimes, we assume the $X_i$ are identically distributed. An important technique for showing almost sure convergence from convergence in probability is to consider subsequences. We first note a few general facts about the various types of convergence we know: \begin{enumerate} \item If $Y_n \rightarrow Y \mbox{ a.s.}$ then $Y_n \rightarrow Y \mbox{ in $\P$}$. \item If $Y_n \rightarrow Y \mbox{ in $\P$}$ then there exists a fixed increasing subsequence $n_k$ such that $Y_{n_k} \rightarrow Y \mbox{ a.s.}$ \item $Y_n \rightarrow Y \mbox{ in $\P$}$ iff for every subsequence $n_k$ there exists a further subsequebce $n_{k}'$ so that $Y_{n_{k}'} \rightarrow Y \mbox{ a.s.}$ \end{enumerate} Proofs of 2 and 3 are in the textbook. We first begin with a technique which uses the information about almost sure convergence of a subsequence of a sequence of random variables, and then somehow getting control over a maximum. Let us now describe the technique. One can prove $Y_n \rightarrow Y \mbox{ a.s.}$ by first showing $Y_{n_k} \rightarrow Y \mbox{ a.s.}$ for some $n_k$ (we choose $n_k$) and then getting control over \begin{eqnarray*} M_k = \max_{n_k \leq m < n_{k+1}} |X_m - X_{n_k}| \end{eqnarray*} In particular we must be able to show that $ M_k \rightarrow 0 \mbox{ a.s.}$ because if $\omega \in \Omega$ is such that both $X_{n_k}(\omega) \rightarrow 0$ and $M_k(\omega) \rightarrow 0$ then we get (using the triangle inequality and th fact that the max is greater than the elements of set over which maximum is taken) \begin{eqnarray*} X_m(\omega) \rightarrow X(\omega), \end{eqnarray*} so if $M_k\ascv 0$, then the above holds almost surely. To illustrate how to use the technique, we start with the example of SLLN with a second moment condition. \begin{theorem} If $X, X_1, X_2, ...$ are i.i.d.\ random variables with $E(X) = \mu$, $E(X^2) < \infty$, and $S_n := X_1 +X_2 + ... + X_n$, then \begin{equation} \label{eqn:sllnwithvariance} \frac{S_n}{n} \rightarrow E(X) \mbox{ a.s.} \end{equation} \end{theorem} \begin{proof} First we find a subsequence converging almost surely to the mean. For that we use two tools: \begin{itemize} \item convergence in probability; and \item the Borel-Cantelli lemma. \end{itemize} Without loss of generality, we can assume that $E(X)=0$. From Chebyshev's inequality we get % \begin{eqnarray*} \P\left( \left|\frac{S_n}{n}\right| > \epsilon\right) < \frac{E(X^2)}{n\epsilon^2}. \end{eqnarray*} % This means that $\frac{S_n}{n} \rightarrow 0 \mbox{ in $\P$}$. Notice that $\sum_k \frac{1}{k^2}$ converges to a finite value, therefore for the subsequence $n_k = k^2$ we get, using the Borel-Cantelli lemma, % \begin{eqnarray*} \P\left( \left|\frac{S_{n^2}}{n^2}\right| > \epsilon \mbox{ i.o.} \right) = 0, \end{eqnarray*} % which means that $\frac{S_{n^2}}{n^2} \rightarrow 0 \mbox{ a.s.}$ Now let us try to control $M_k$ as defined above. For convenience we define % \begin{eqnarray*} D_n := \max_{n^2 \leq k < (n+1)^2} |S_k - S_{n^2}| \end{eqnarray*} % for $n^2 \leq k < (n+1)^2$. We have $|S_k| \leq |S_{n^2}| + D_n$ and $\frac{1}{k} \leq \frac{1}{n^2}$, so we have the following inequality: % \begin{eqnarray*} \left| \frac{S_k}{k}\right| \leq \left| \frac{S_{n^2}}{n^2}\right| + \frac{D_n}{n^2}. \end{eqnarray*} % Finally, using the definition of $M_k$, we get the following: % \begin{eqnarray*} M_k &\leq& \max_{n^2 \leq k < (n+1)^2} \left| \frac{S_k}{k}\right| + \left| \frac{S_{n^2}}{n^2}\right|\\ & \leq & 2\left|\frac{S_{n^2}}{n^2}\right| + \frac{D_n}{n^2}.\\ \end{eqnarray*} % So all we need to prove is that $\frac{D_n}{n^2} \rightarrow 0 \mbox{ a.s.}$ Let us define a new quantity $T_m = S_{n^2 + m} - S_{n^2}$. Therefore, % \begin{eqnarray*} D_{n}^2 & =& \max_{1\leq m \leq 2n} T_{m}^2 \\ & \leq & \sum_{m = 1}^{2n} T_{m}^2. \end{eqnarray*} % Taking expectations on both sides, we get that % \begin{eqnarray*} E(D_{n}^2)& \leq &\sum_{m = 1}^{2n} m\sigma^2 = n(2n+1) \sigma^2\\ &\leq & 4n^2 \sigma^2, \end{eqnarray*} % where $E(X^2) = \sigma^2$. Hence we get that % \begin{eqnarray*} \P\left( \left|\frac{D_n}{n^2}\right| > \epsilon \right) &\leq& \frac{E\left(\left(\frac{D_n}{n^2}\right)^2 \right)} {\epsilon^2}\\ &\leq & \frac{4\sigma^2}{n^2 \epsilon^2}. \end{eqnarray*} Applying the Borel-Cantelli lemma with the fact \begin{eqnarray*} \sum_n \P\left( \left|\frac{D_n}{n^2}\right| > \epsilon \right) < \infty \end{eqnarray*} we get that $\frac{D_n}{n^2} \rightarrow 0 \mbox{ a.s.}$, which completes the proof. \end{proof} \section{Kolmogorov's Maximal Inequality} % keywords: Kolmogorov's maximal inequality, Kolmogorov's inequality % end Now we proceed to Kolmogorov's inequality. We formally state it as follows. \begin{theorem}[Kolmogorov's Inequality] Let $X_1, X_2, ...$ be independent with $E(X_i) = 0$ and $\sigma_{i}^2 = E(X_{i}^2) < \infty$, and define $S_k = X_1 + X_2 + ... +X_k$. Then \begin{equation} \label{eqn:kolmogorovinequality} \P\left( \max_{1\leq k \leq n} |S_k| \geq \epsilon \right) \leq \frac{E(S_{n}^2)}{\epsilon^2}. \end{equation} \end{theorem} \begin{proof} Decompose the event according to when we escape from the $\pm \epsilon$ strip. Let \begin{eqnarray*} A_k = \{|S_m| < \epsilon \mbox{ for } 1 \leq m < k \mbox{; } |S_k| \geq \epsilon\} \end{eqnarray*} % In words, $A_k$ is the event that the first escape out of the $\epsilon$ strip occurs at the $k$th step. Also notice that all these events are disjoint, and that $\bigcup_{k = 1}^{n} A_k \left\{ \max_{1\leq k \leq n} |S_k| \geq \epsilon \right\}$. Then, % \begin{eqnarray*} E(S_{n}^2) \geq E\left( S_{n}^2 1\left(\bigcup_{k=1}^n A_k\right) \right) \sum_{k=1}^{n} E\left(S_{n}^2 1_{A_k}\right). \end{eqnarray*} % We can split $S_{n}^2 = S_{k}^2 + (S_{n} - S_k)^2 + 2S_k(S_n - S_k)$, and write % \begin{eqnarray*} E\left(S_{n}^2 1_{A_k}\right) &=& E\left( S_{k}^2 1_{A_k}\right) + E\left( (S_n-S_k)^2 1_{A_k} \right) + E\left(2(S_n-S_k)S_k 1_{A_k}\right)\\ &\geq & \epsilon^2 \P(A_k), \end{eqnarray*} % where the first term is larger than $\epsilon^2$, the second term is always positive, and the third term is the expectation of a product of two independent random variables witn mean $0$. Finally, we put this into the summation to get \begin{eqnarray*} E(S_{n}^2) \geq \sum_{k=1}^n \P(A_k) \epsilon^2 = \P\left( \max_{1\leq k \leq n} |S_k| \geq \epsilon \right) \epsilon^2, \end{eqnarray*} which easily leads to the result. This completes the proof. \end{proof} We observe that the inequality is valid for any sequence of r.v.'s $(X_1,...X_n)$ such that $$E\left(2(S_n-S_k)S_k 1_{A_k}\right) = 0.$$ This will lead to the definition in future lectures of a \emph{martingale difference sequence}. \end{document}